

ModCpp

Modern C++

Modern C++
ModCpp - Version: 1

4 days Course

Description:
Modern C++ is not just about new language features or a bunch of library improvements.
Modern C++ is how we write code, how we design interfaces, and how we make the best use
of modern features while respecting existing investments. This is an exciting time to be a C++
developer, and this course will show you how to make the most of C++ 11/14, how to use
advanced template features and design for exception safety, and how to work with
parallelism and concurrency in standard and non-standard C++ code. In this course you will
experience the spirit of true modern C++.

Intended audience:
C++ developers, team leaders, and software architects.

Prerequisites:
At least two years of C++ programming experience, including with templates and the STL
Familiarity with operating systems concepts, such as processes and threads

Objectives:
Understand the productivity features of C++ 11/14 and how they can be used to modernize
existing code
Manage resources with RAII and smart pointers in an exception-safe fashion
Use the C++ 11 standard threading features and the Microsoft-specific Concurrency Runtime
to parallelize code

Apply move semantics to improve performance in resource-owning classes
Understand advanced templates, type traits, and metaprogramming issues

Topics:

Module 01 - Visual Studio Goodies

 • Runtime checks
 • Static code analysis
 • The Visual Studio Profiler
 • WPO
 • PGO

Module 02 - C++ Technical Report 1 (TR1)

 • Function objects
 • std::function
 • std::bind and std::mem_fn
 • New containers
 • Miscellaneous features

Module 03 - C++ 11/14 Productivity Features

 • Non-static data member initializers
 • override and final functions
 • Delegating constructors
 • Alias templates
 • Type inference for local variables (auto)
 • Type inference for expressions (decltype)
 • Uniform initialization and list initialization

 • Extended literals
 • Compile-time constant expressions (constexpr)
 • Deleted and defaulted functions
 • Range-based for loop
 • Lambda functions
 • Lambdas and function pointers
 • LAB: auto, range-based for, lambdas

Module 04 - C++ 11 Move Semantics

 • Temporary objects and copies
 • Rvalue references
 • Move semantics (constructor and assignment)
 • std::move
 • Universal references
 • Perfect forwarding
 • Guidance for move semantics
 • LAB: move support

Module 05 - STL in C++ 11

 • std::atomic
 • Threads
 • Futures and promises
 • std::async
 • RAII and smart pointers
 • Guidance for smart pointers
 • Unordered containers
 • Regular expressions
 • LAB: smart pointers

Module 06 - Microsoft Concurrency Runtime

 • Task parallelism vs. data parallelism
 • Task groups
 • Tasks and continuations
 • Parallel loops
 • Parallel algorithms
 • Concurrent containers
 • Synchronization mechanisms
 • LAB: parallelism and asynchrony

Module 07 - Advanced Templates

 • Recap of function templates and class templates
 • Template specialization and partial specialization
 • Type traits
 • Detecting nested type and member at compile-time
 • std::enable_if
 • Variadic templates

Module 08 - Exception Safety

 • Error handling
 • Recap of C++ exception syntax
 • C++ 11 nested exceptions and exception capturing
 • Exception safety guarantees
 • Guidance for constructors and operator=
 • Obtaining strong exception safety by move or swap
 • LAB: analyzing exception safety

 º Module 09 - C++ AMP (optional, by request)

 º Module 10 - C++/CX (optional, by request)

