

RXTDF

Asynchronous Computing and Composing
Asynchronous and Event-Based

Asynchronous Computing and
Composing Asynchronous and Event-

Based
RXTDF - Version: 1

5 days Course

Description:
5 days that target the different approach to parallelism and
computation of asynchronous events using
Async / Await, Reactive Extension (RX) and TPL Dataflow.
Rx is a functional programming library designed to handle complex event processing. The
course deep-dives into the library’s concept and guidelines.
It will cover topics like exception handling, testing, remote processing, and scheduling.
Students will master both practice and theory and become familiar with numerous RX
operators.
TPL Dataflow is an agent-based library designed to achieve high throughput and low latency
for both I/O- and CPU-bound operations. The course deep-dives into the library’s concept
and guidelines. Students will master both practice and theory.

Intended audience:
.NET developers or team leaders with:
•at least 2 years of experience with C#;
•Programming experience and some practice with LINQ Query;
•Programming experience and some practice with multithreading;
•Familiarity with TPL (.NET 4) is recommended.

Prerequisites:
Objectives:

Appreciate the architectural and design principles of Async, RX and TPL Dataflow
programming model
Practice complex event and messaging processing
Learn to handle exceptions
Test complex event pipeline
Know how to design RX flow and TPL Dataflow
Learn to combine different approach together
Master design principles and guidelines of the agent base model
Practice the complex parallel flow
Understand TPL Dataflow blocks and performance tuning

Topics:

Introduction

 • Moore’s Law
 • Amdahl’s Law
 • Thread safety
 • .NET Parallel History
 • Task and Task<T>
 • Custom Task
 • Continuation

 º Tasks vs. APM
 • Async and Await
 • Cancellation
 • Exception Handling

 • Concurrent Collection

Rx Introduction

 • What is Rx?
 • Push standard
 • LINQ-able
 • Like Events but better
 • Course Goals
 • Why Rx

 º Push vs. pull

 º Test Case: Cloud search

Get started

 • NuGet

Concept

 • Producer / Consumer

Library structure

 • Different offering
 • Enlighten concept

Marble Diagram

 • Concept
 • Select
 • Where

Built-in factories

 • Interval
 • Timer
 • Range
 • Return
 • Create
 • Generate

Monitoring

 • Do operator
 • Visual RX

 º LAB 01

Concurrency model

 • Scheduler
 • Built-in Scheduler
 • ObserveOn
 • SubscribeOn

Backwards compatibility

 • Composite events

Exception Handling

 • Retry
 • Catch
 • Finally
 • SubscribeSafe

 º LAB 02

Producer nature

 • Hot Vs. Cold Observables
 • Publish
 • RefCount

Subjects

 • Subject
 • Replay and ReplaySubject

Operators

 • District
 • DistinctUntilChanged
 • Sample
 • Aggregate
 • Scan

Common Combinators

 • Merge
 • Zip
 • CombineLatest
 • Amb

Splitting

 • Buffer
 • Window
 • Select Many
 • Group By

 º LAB 03

Time-oriented

 • Interval
 • Timeout
 • Timestamp
 • TimeInterval
 • Throttle
 • Sample
 • Take and Skip
 • Generate Delay
 • Delay Subscription

Time-based Combinators

 • Join
 • Group Join

Disposables

 • Create
 • CompositeDisposable
 • RefCountDisposable
 • CancellationDisposable
 • BooleanDisposable
 • ContextDisposable
 • ScheduledDisposable
 • SingleAssignmentDisposable

 • MultipleAssignmentDisposable
 • SerialDisposable

 º LAB 04

Scheduling

 • Custom Scheduler
 • Virtual time
 • Historical Scheduler

Testing

 • Notification
 • TestScheduler
 • CreateHotObservable / CreateColdObservable

Custom Operations

 • Defer
 • Extending the framework

 º LAB 05

Remote

 • Rx-Remoting
 • IQbservable

Introduction to Async / Await (C#5)

 • Using
 • Loops

TPL Advance

 • Scheduling
 • Async and UI

Parallel I/O

 • What makes I/O operations different?
 • I/O completion port

What is TPL Dataflow?

 • The agent base concept
 • Evolution
 • Goals

Getting started

 • Namespace
 • NuGet

Contract

 • Source API
 • Target API
 • Block API
 • Push vs. Pool

Blocks

 • Blocks categories

Action block

 • Structure
 • Functionality
 • Throttling

Buffer Block

 • Structure
 • Functionality
 • Push and Pool
 • Bounded capacity

Broadcast Block

 • Structure
 • functionality
 • What makes it different than Buffer Block?

Transform Block

 • Structure
 • Functionality

Transform Many Block

 • Structure
 • Functionality

TPL Dataflow and Async

 • Using async / await with TDF
 • Processing I/O operations

 º LAB 06

Performance tuning

 • MaxMessagesPerTask

 º Case Study: Web Crawler

Batch Block

 • Structure
 • Functionality

Join Block

 • Structure
 • Functionality

 º LAB 07

Greediness

 • Targeting complex scenarios and correlation
 • ConsumeMessage API
 • Two-phase commit
 • ReserveMessage API
 • ReleaseReservation API

Greediness and built-in blocks

 • BatchBlock
 • JoinBlock

BatchedJoinBlock

 • Structure
 • Functionality

WriteOnceBlock

 • Structure
 • Functionality

 º LAB 08

Rx vs. TDF

 • Design differences
 • Better together

 º Summary

