

ModCPPmulti

Concurrency and Multithreading with
Modern C++

Concurrency and Multithreading with
Modern C++

ModCPPmulti - Version: 1

2 days Course

Description:
Course will combine theory and hands-on live code demonstration.
Attendees will practice learnt concepts and techniques by solving specially designed
exercises.
Hands-on practice is ~30% of each session time.

Intended audience:
Software engineers with hands-on experience using C++11/14/17. Prior multithreading
experience is not required but is recommended.

Prerequisites:
Objectives:

Cover C++ memory model.
Covers multithreading features in C++17 (including C++14/11)
Covers Multithreading and Concurrency features in C++20.
Covers C++17 parallel standard algorithms.
Covers best practices and common pitfalls.

Topics:

Introduction to Multithreading and Concurrency

 • What is parallelism?
 • What is concurrency?
 • Thread vs. Process
 • Review of modern CPUs and memory architecture
 • Amdhal Law.

std::thread

 • What is a thread – OS perspective
 • Starting new threads
 • Passing arguments to new threads
 • Background threads
 • Getting results from new threads
 • Join and dispatch
 • Yield and sleep

Sharing State

 • Problems with sharing state
 • Threads and global variables
 • Threads and thread_local variables
 • Atomic operations.
 • Once flags
 • Race conditions.
 • Synchronization with mutex
 • Mutex types

Mutex locks

 • Working with RAII-based locks
 • Unique locks
 • Deadlocks
 • Deadlocks avoidance

Multiple Readers Single Writer Problem

 • Shared Locks
 • Why no upgradable locks
 • Bias and Fairness

Condition Variables

 • Condition variables and mutex
 • Implementing waitable data structures.
 • Spurious wakeup and avoidance

Async Processing

 • std::async and std::future
 • Packaged tasks

C++20 Joinable Thread

 • jthread
 • Stop tokens

Additional Synchronization Tools

 • Counting semaphores
 • Barrier
 • Latch

Parallel standard algorithm in C++17

 • Execution policies in C++17 and C++20
 • What algorithms are available?
 • Demo with Intel Thread Building Blocks

