Sela.

[

ModCPPmulti

Concurrency and Multithreading with

Modern C++
college@sela.co.il 03-6176666

= Y 5 t
) = _ —_—
. ';I IEEI o _
— g e ey
— E — LI ERNLEL EEE
gooo - — gooolooo =
a2 =l [D
ﬁgggg @l;mui 2 —|=——|nopo|aos M =
ooooo oooo - —(—— &}Dﬂﬂ n
. _ 1& g- F 1 == 2 o =y
o—er P TR =" [¢ i S - o

ooooooaDoaooan
goooooaDoaooon

oooooooocoaooan

[=R=0=0=0=1]
[=R=Q=0=)=]

opooo
N

Concurrency and Multithreading with
Modern C++

ModCPPmulti - Version: 1

(™ 2 days Course

Description:

Course will combine theory and hands-on live code demonstration.
Attendees will practice learnt concepts and techniques by solving specially designed
exercises.

Hands-on practice is ~¥30% of each session time.

Intended audience:

Software engineers with hands-on experience using C++11/14/17. Prior multithreading

experience is not required but is recommended.

Prerequisites:

Objectives:

Cover C++ memory model.

Covers multithreading features in C++17 (including C++14/11)
Covers Multithreading and Concurrency features in C++20.
Covers C++17 parallel standard algorithms.

Covers best practices and common pitfalls.

Topics:

Introduction to Multithreading and Concurrency

e What is parallelism?

e What is concurrency?

e Thread vs. Process

e Review of modern CPUs and memory architecture
e Amdhal Law.

std::thread

e What is a thread — OS perspective
e Starting new threads

e Passing arguments to new threads
e Background threads

» Getting results from new threads
e Join and dispatch

e Yield and sleep

Sharing State

® Problems with sharing state

® Threads and global variables

® Threads and thread_local variables
e Atomic operations.

* Once flags

e Race conditions.

¢ Synchronization with mutex

e Mutex types

gopogcoaooan
goopoaopoaooan
gopooooaooan

gopogcoaooan
goopoaopoaooan
gopooooaooan

Mutex locks

e Working with RAIl-based locks
e Unique locks
e Deadlocks

e Deadlocks avoidance

Multiple Readers Single Writer Problem
e Shared Locks

e Why no upgradable locks

¢ Bias and Fairness

Condition Variables
e Condition variables and mutex

e Implementing waitable data structures.

e Spurious wakeup and avoidance

Async Processing

e std::async and std::future

¢ Packaged tasks

C++20 Joinable Thread

e jthread
e Stop tokens

gopogcoaooan
goopoaopoaooan
gopooooaooan

aogo

.._::I I_::- .:I_'_I.
w8 [. =
.IIIII:I ﬁ#g =) '] ———|
SRR i) =)

Additional Synchronization Tools

e Counting semaphores
e Barrier
e Latch

Parallel standard algorithm in C++17

¢ Execution policies in C++17 and C++20
e What algorithms are available?

e Demo with Intel Thread Building Blocks

