

MLGC

Machine Learning on Google Cloud

college@sela.co.il

03-6176666

Machine Learning on Google Cloud

MLGC - Version: 1

🕒 0 days Course

Description:

This course teaches you how to build Vertex AI AutoML models without writing a single line of code; build BigQuery ML models knowing basic SQL; create Vertex AI custom training jobs you deploy using containers (with little knowledge of Docker0; use Feature Store for data management and governance; use feature engineering for model improvement; determine the appropriate data preprocessing options for your use case; write distributed ML models that scale in TensorFlow; and leverage best practices to implement machine learning on Google Cloud. Learn all this and more!

Intended audience:

Prerequisites:

Objectives:

Topics:

How Google Does Machine Learning

Objectives

^o What are best practices for implementing machine learning on Google Cloud? What is

^o Vertex AI and how can you use the platform to quickly build, train, and deploy AutoML
 ^o machine learning models without writing a single line of code? What is machine

Plearning, and what kinds of problems can it solve?

- ^o Google thinks about machine learning slightly differently: it's about providing a unified
- ^o platform for managed datasets, a feature store, a way to build, train, and deploy
- ^o machine learning models without writing a single line of code, providing the ability
- ^o to label data, create Workbench notebooks using frameworks such as TensorFlow,
- ^o SciKit Learn, Pytorch, R, and others. Our Vertex AI Platform also includes the ability
- ^o to train custom models, build component pipelines, and perform both online and batch
- ^o predictions. We also discuss the five phases of converting a candidate use case to be
- ^o driven by machine learning, and consider why it is important to not skip the phases. We
 ^o end with a recognition of the biases that machine learning can amplify and how
- ⁰ to recognize them.
- Describe the Vertex AI Platform and how it is used to quickly build, train, and deploy
- ^o AutoML machine learning models without writing a single line of code.
- ^o Describe best practices for implementing machine learning on Google Cloud.
- ^o Develop a data strategy around machine learning.
- ^o Examine use cases that are then reimagined through an ML lens.
- ^o Leverage Google Cloud Platform tools and environment to do ML.
- ^o Learn from Google's experience to avoid common pitfalls.
- ^o Carry out data science tasks in online collaborative notebooks.
- Activities:
- • Hands-On Labs
- • Module Quizzes
- • Module Readings

Launching into Machine Learning

Objectives

^o The course begins with a discussion about data: how to improve data quality and
 ^o perform exploratory data analysis. We describe Vertex AI AutoML and how to build,

^⁰ train, and deploy an ML model without writing a single line of code. You will understand

^o the benefits of Big Query ML. We then discuss how to optimize a machine learning

- ^o (ML) model and how generalization and sampling can help assess the quality of ML
- ^o models for custom training.
- Describe Vertex AI AutoML and how to build, train, and deploy an ML model without
 writing a single line of code.
- ^o Describe Big Query ML and its benefits.
- Describe how to improve data quality.
- ^o Perform exploratory data analysis.
- ${}^{\underline{o}}$ \bullet Build and train supervised learning models.
- ^o Optimize and evaluate models using loss functions and performance metrics.
- ^o Mitigate common problems that arise in machine learning.
- ^o Create repeatable and scalable training, evaluation, and test datasets.
- ♀ Hands
- Activities
 - Hands-On Labs
 - Module Quizzes
 - Module Readings

TensorFlow on Google Cloud

- Objectives:
- The modules cover designing and building a TensorFlow input data pipeline, building
- ML models with TensorFlow and Keras, improving the accuracy of ML models, writing
- ML models for scaled use, and writing specialized ML models.
- Create TensorFlow and Keras machine learning models.
- • Describe TensorFlow key components.
- • Use the tf.data library to manipulate data and large datasets.
- • Build a ML model using tf.keras preprocessing layers.
- • Use the Keras Sequential and Functional APIs for simple and advanced model

- creation. Understand how model subclassing can be used for more
- customized models.
- • Use tf.keras.preprocessing utilities for working with image data, text data, and
- sequence data.
- • Train, deploy, and productionalize ML models at scale with Cloud AI Platform.
- Activities:
- • Hands-On Labs
- • Module Quizzes
- • Module Readings

Feature Engineering

- Objectives
 - Want to know about Vertex AI Feature Store? Want to know how you can improve
 the accuracy of your ML models? What about how to find which data columns make
 - ⁹ the most useful features? Welcome to Feature Engineering, where we discuss good
 - ${}^{\underline{o}}$ versus bad features and how you can preprocess and transform them for optimal use
 - ^e in your models. This course includes content and labs on feature engineering using
 - ^⁰ BigQuery ML, Keras, and TensorFlow.
 - Describe Vertex AI Feature Store.
 - ^o Compare the key required aspects of a good feature.
 - ${}^{\underline{o}}$ \bullet Combine and create new feature combinations through feature crosses.
 - ^⁰ Perform feature engineering using BigQuery ML, Keras, and TensorFlow.
 - Understand how to preprocess and explore features with Dataflow and Dataprep
 by Trifacta.
 - ^o Understand and apply how TensorFlow transforms features.
- Activities:
- • Hands-On Labs
- • Module Quizzes
- • Module Readings

Machine Learning in the Enterprise

Objectives

- ^o This course encompasses a real-world practical approach to the ML Workflow: a case
- ^o study approach that presents an ML team faced with several ML business
- ^o requirements and use cases. This team must understand the tools required for data
- ^o management and governance and consider the best approach for data preprocessing:
- ^o from providing an overview of Dataflow and Dataprep to using BigQuery
- ^⁰ for preprocessing tasks.
- ^e The team is presented with three options to build machine learning models for two
 ^e specific use cases. This course explains why the team would use AutoML, BigQuery
 ^e ML, or custom training to achieve their objectives.
- ^o A deeper dive into custom training is presented in this course. We describe custom
- training requirements from training code structure, storage, and loading large datasets
 to exporting a trained model.
- You will build a custom training machine learning model, which allows you to build
 a container image with little knowledge of Docker.
- ^e The case study team examines hyperparameter tuning using Vertex Vizier and how it
 ^e can be used to improve model performance. To understand more about model
 ^e improvement, we dive into a bit of theory: we discuss regularization, dealing with
- ^o sparsity, and many other essential concepts and principles. We end with an overview
 ^o of prediction and model monitoring and how Vertex AI can be used to manage
 ^o ML models.
- Activities:
- • Hands-On Labs
- • Module Quizzes
- • Module Readings