|
E — oo
- —— oog
oooo|§%, oooon| =1 ==
coooo 00000 (—|- = —|popnl88a
S el i O3 = Mo s i
] - ol ' >

Sela.

[

C7

Design Patterns in C++

N

college@sela_co.il 03-6176666

/
i

(K
I L
=
I

|
[
D

[=R=0=0=0=1]
[=R=Q=0=)=]

opooo
N

ooooooaDoaooan
goooooaDoaooon

oooooooocoaooan

Pha.
M

Design Patterns in C++

C7 - Version: 3.1

(®) 5 days Course

Description:

The course proceeds beyond C++ programming to investigate advanced aspects of Object
Oriented Programming (OOP), including the implementation of many useful, industry-
standard design patterns, using C++ code examples and exercises. The course promotes a
complete understanding of the object-oriented paradigm, both on requirement level (e.g.,
dynamic classification, multi-methods) and implementation level (inheritance layout, virtual
table). The developer attending the course will be able to identify and implement many
common patterns in low-level design, and some patterns that affect the top-level design, i.e.,
the class diagram and the contents of abstract interfaces. It is pre-requisite for the “O0D/

Object Modeling” course.

Intended audience:

This course is intended for C++ programmers, C++ Project Managers, and C++ Designers.

Prerequisites:

Completed a high level C++ course

At least a year of experience programming in Object-Oriented C++

Objectives:

Know how to write better software using Design Patterns

Know how to utilize Design Patterns in projects.

Topics:

STL — The Standard Templates Library

e General Overview

¢ Containers

e |[terators

e Algorithms

* The ways to customize STL functionality
e |[terator Pattern

Introduction to OO Design Patterns

* The OO Design Challenge

* The Course Goals

® Application Score of Design Patterns
e Design Patterns - The Inspiration

¢ Design Pattern Items - GOF Form

e Common Terminology

Controlling Object Access

® UML - "The Class Diagramm"
* Reference Count Idiom

¢ RC Smart Pointer Pattern

* Flyweight pool Pattern

® Proxy Pattern

Initialization And Registration

gopogcoaooan
goopoaopoaooan
gopooooaooan

e Singleton Pattern

e Handleton Pattern

* Object Initialization Order Pattern
¢ The "Open/Closed" Principle

e Registration Idiom

e Singleton Destruction Manager

e Command Pattern

® Observer Pattern

Changing Object Behaviour

e Strategy Pattern

e Liskov's substitutability principle
¢ State Pattern

* Bridge Pattern

¢ Decorator Pattern

e Adapter Pattern

Creating Objects Of Any Type

e Template Method Pattern
e Prototype Pattern

e Factory Method Pattern

* Abstract Factory Pattern
e Typelist Idiom

* Dynamic Pluggable Factory Pattern

e Product Trader Pattern

¢ \irtual Constructor Pattern

Distributing Functionality

gopogcoaooan
goopoaopoaooan
gopooooaooan

aooa
ANERigi]

goopoaopoaooan
gopooooaooan

s
S
S
¥
b H}z
goooaocoaoooan

e Composite Pattern
* Multi-methods Idiom
* Double Dispatch Idiom

¢ Visitor Pattern

